3.151 \(\int \frac{1}{\left (d+e x^2\right )^2 \left (a+c x^4\right )} \, dx\)

Optimal. Leaf size=453 \[ -\frac{c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}-\frac{c^{3/4} \left (-2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{c^{3/4} \left (-2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{e^2 x}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}+\frac{2 c \sqrt{d} e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\left (a e^2+c d^2\right )^2}+\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{2 d^{3/2} \left (a e^2+c d^2\right )} \]

[Out]

(e^2*x)/(2*d*(c*d^2 + a*e^2)*(d + e*x^2)) + (2*c*Sqrt[d]*e^(3/2)*ArcTan[(Sqrt[e]
*x)/Sqrt[d]])/(c*d^2 + a*e^2)^2 + (e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(2*d^(3/
2)*(c*d^2 + a*e^2)) - (c^(3/4)*(c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*ArcTan[1
- (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)^2) + (c^(3/4)
*(c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]
)/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)^2) - (c^(3/4)*(c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*
e - a*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^
(3/4)*(c*d^2 + a*e^2)^2) + (c^(3/4)*(c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*Log[
Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 +
a*e^2)^2)

_______________________________________________________________________________________

Rubi [A]  time = 0.729074, antiderivative size = 453, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 9, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.474 \[ -\frac{c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{4 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}-\frac{c^{3/4} \left (-2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{c^{3/4} \left (-2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{2 \sqrt{2} a^{3/4} \left (a e^2+c d^2\right )^2}+\frac{e^2 x}{2 d \left (d+e x^2\right ) \left (a e^2+c d^2\right )}+\frac{2 c \sqrt{d} e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{\left (a e^2+c d^2\right )^2}+\frac{e^{3/2} \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{2 d^{3/2} \left (a e^2+c d^2\right )} \]

Antiderivative was successfully verified.

[In]  Int[1/((d + e*x^2)^2*(a + c*x^4)),x]

[Out]

(e^2*x)/(2*d*(c*d^2 + a*e^2)*(d + e*x^2)) + (2*c*Sqrt[d]*e^(3/2)*ArcTan[(Sqrt[e]
*x)/Sqrt[d]])/(c*d^2 + a*e^2)^2 + (e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(2*d^(3/
2)*(c*d^2 + a*e^2)) - (c^(3/4)*(c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*ArcTan[1
- (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)^2) + (c^(3/4)
*(c*d^2 - 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)]
)/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)^2) - (c^(3/4)*(c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*
e - a*e^2)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^
(3/4)*(c*d^2 + a*e^2)^2) + (c^(3/4)*(c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*Log[
Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 +
a*e^2)^2)

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 133.508, size = 425, normalized size = 0.94 \[ \frac{2 c \sqrt{d} e^{\frac{3}{2}} \operatorname{atan}{\left (\frac{\sqrt{e} x}{\sqrt{d}} \right )}}{\left (a e^{2} + c d^{2}\right )^{2}} + \frac{e^{2} x}{2 d \left (d + e x^{2}\right ) \left (a e^{2} + c d^{2}\right )} + \frac{e^{\frac{3}{2}} \operatorname{atan}{\left (\frac{\sqrt{e} x}{\sqrt{d}} \right )}}{2 d^{\frac{3}{2}} \left (a e^{2} + c d^{2}\right )} + \frac{\sqrt{2} c^{\frac{3}{4}} \left (- 2 \sqrt{a} \sqrt{c} d e + a e^{2} - c d^{2}\right ) \log{\left (- \sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 a^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )^{2}} - \frac{\sqrt{2} c^{\frac{3}{4}} \left (- 2 \sqrt{a} \sqrt{c} d e + a e^{2} - c d^{2}\right ) \log{\left (\sqrt{2} \sqrt [4]{a} c^{\frac{3}{4}} x + \sqrt{a} \sqrt{c} + c x^{2} \right )}}{8 a^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )^{2}} + \frac{\sqrt{2} c^{\frac{3}{4}} \left (2 \sqrt{a} \sqrt{c} d e + a e^{2} - c d^{2}\right ) \operatorname{atan}{\left (1 - \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 a^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )^{2}} - \frac{\sqrt{2} c^{\frac{3}{4}} \left (2 \sqrt{a} \sqrt{c} d e + a e^{2} - c d^{2}\right ) \operatorname{atan}{\left (1 + \frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}} \right )}}{4 a^{\frac{3}{4}} \left (a e^{2} + c d^{2}\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*x**2+d)**2/(c*x**4+a),x)

[Out]

2*c*sqrt(d)*e**(3/2)*atan(sqrt(e)*x/sqrt(d))/(a*e**2 + c*d**2)**2 + e**2*x/(2*d*
(d + e*x**2)*(a*e**2 + c*d**2)) + e**(3/2)*atan(sqrt(e)*x/sqrt(d))/(2*d**(3/2)*(
a*e**2 + c*d**2)) + sqrt(2)*c**(3/4)*(-2*sqrt(a)*sqrt(c)*d*e + a*e**2 - c*d**2)*
log(-sqrt(2)*a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c*x**2)/(8*a**(3/4)*(a*e**2
 + c*d**2)**2) - sqrt(2)*c**(3/4)*(-2*sqrt(a)*sqrt(c)*d*e + a*e**2 - c*d**2)*log
(sqrt(2)*a**(1/4)*c**(3/4)*x + sqrt(a)*sqrt(c) + c*x**2)/(8*a**(3/4)*(a*e**2 + c
*d**2)**2) + sqrt(2)*c**(3/4)*(2*sqrt(a)*sqrt(c)*d*e + a*e**2 - c*d**2)*atan(1 -
 sqrt(2)*c**(1/4)*x/a**(1/4))/(4*a**(3/4)*(a*e**2 + c*d**2)**2) - sqrt(2)*c**(3/
4)*(2*sqrt(a)*sqrt(c)*d*e + a*e**2 - c*d**2)*atan(1 + sqrt(2)*c**(1/4)*x/a**(1/4
))/(4*a**(3/4)*(a*e**2 + c*d**2)**2)

_______________________________________________________________________________________

Mathematica [A]  time = 1.08497, size = 362, normalized size = 0.8 \[ \frac{\frac{\sqrt{2} c^{3/4} \left (-2 \sqrt{a} \sqrt{c} d e+a e^2-c d^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{a^{3/4}}+\frac{\sqrt{2} c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e-a e^2+c d^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{a^{3/4}}+\frac{2 \sqrt{2} c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e+a e^2-c d^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{a^{3/4}}-\frac{2 \sqrt{2} c^{3/4} \left (2 \sqrt{a} \sqrt{c} d e+a e^2-c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{a^{3/4}}+\frac{4 e^2 x \left (a e^2+c d^2\right )}{d \left (d+e x^2\right )}+\frac{4 e^{3/2} \left (a e^2+5 c d^2\right ) \tan ^{-1}\left (\frac{\sqrt{e} x}{\sqrt{d}}\right )}{d^{3/2}}}{8 \left (a e^2+c d^2\right )^2} \]

Antiderivative was successfully verified.

[In]  Integrate[1/((d + e*x^2)^2*(a + c*x^4)),x]

[Out]

((4*e^2*(c*d^2 + a*e^2)*x)/(d*(d + e*x^2)) + (4*e^(3/2)*(5*c*d^2 + a*e^2)*ArcTan
[(Sqrt[e]*x)/Sqrt[d]])/d^(3/2) + (2*Sqrt[2]*c^(3/4)*(-(c*d^2) + 2*Sqrt[a]*Sqrt[c
]*d*e + a*e^2)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/a^(3/4) - (2*Sqrt[2]*c^(
3/4)*(-(c*d^2) + 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a
^(1/4)])/a^(3/4) + (Sqrt[2]*c^(3/4)*(-(c*d^2) - 2*Sqrt[a]*Sqrt[c]*d*e + a*e^2)*L
og[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/a^(3/4) + (Sqrt[2]*c^(3/4
)*(c*d^2 + 2*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*
x + Sqrt[c]*x^2])/a^(3/4))/(8*(c*d^2 + a*e^2)^2)

_______________________________________________________________________________________

Maple [A]  time = 0.015, size = 650, normalized size = 1.4 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*x^2+d)^2/(c*x^4+a),x)

[Out]

-1/4/(a*e^2+c*d^2)^2*c*(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x+1)*e
^2+1/4/(a*e^2+c*d^2)^2*c^2*(1/c*a)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*
x+1)*d^2-1/4/(a*e^2+c*d^2)^2*c*(1/c*a)^(1/4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4
)*x-1)*e^2+1/4/(a*e^2+c*d^2)^2*c^2*(1/c*a)^(1/4)/a*2^(1/2)*arctan(2^(1/2)/(1/c*a
)^(1/4)*x-1)*d^2-1/8/(a*e^2+c*d^2)^2*c*(1/c*a)^(1/4)*2^(1/2)*ln((x^2+(1/c*a)^(1/
4)*x*2^(1/2)+(1/c*a)^(1/2))/(x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2)))*e^2+1/8
/(a*e^2+c*d^2)^2*c^2*(1/c*a)^(1/4)/a*2^(1/2)*ln((x^2+(1/c*a)^(1/4)*x*2^(1/2)+(1/
c*a)^(1/2))/(x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2)))*d^2-1/4/(a*e^2+c*d^2)^2
*c*d*e/(1/c*a)^(1/4)*2^(1/2)*ln((x^2-(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2))/(x^2
+(1/c*a)^(1/4)*x*2^(1/2)+(1/c*a)^(1/2)))-1/2/(a*e^2+c*d^2)^2*c*d*e/(1/c*a)^(1/4)
*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x+1)-1/2/(a*e^2+c*d^2)^2*c*d*e/(1/c*a)^(1/
4)*2^(1/2)*arctan(2^(1/2)/(1/c*a)^(1/4)*x-1)+1/2*e^4/(a*e^2+c*d^2)^2/d*x/(e*x^2+
d)*a+1/2*e^2/(a*e^2+c*d^2)^2*d*x/(e*x^2+d)*c+1/2*e^4/(a*e^2+c*d^2)^2/d/(d*e)^(1/
2)*arctan(x*e/(d*e)^(1/2))*a+5/2*e^2/(a*e^2+c*d^2)^2*d/(d*e)^(1/2)*arctan(x*e/(d
*e)^(1/2))*c

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + a)*(e*x^2 + d)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 19.115, size = 1, normalized size = 0. \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + a)*(e*x^2 + d)^2),x, algorithm="fricas")

[Out]

[1/4*((c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*
d*e^5)*x^2)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 +
 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^
2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4
*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 +
 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a
*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))*l
og((c^4*d^4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^4)*x + (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2
+ 7*a^3*c^2*d^2*e^4 - a^4*c*e^6 + 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c
^2*d^5*e^5 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38
*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d
^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^
8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))*sqrt((4*
c^3*d^3*e - 4*a*c^2*d*e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 +
 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e
^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a
^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10
 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3
*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) - (c^2*d^6 + 2*a*c*d
^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2)*sqrt((4*c^3*
d^3*e - 4*a*c^2*d*e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a
^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 -
 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c
^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 2
8*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6
*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))*log((c^4*d^4 - 6*a*c^3*d^
2*e^2 + a^2*c^2*e^4)*x - (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2 + 7*a^3*c^2*d^2*e^4 - a^
4*c*e^6 + 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c^2*d^5*e^5 + 4*a^6*c*d^3
*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^
3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^1
2*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*
c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^
3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e
^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6
+ a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6
*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 +
 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4
*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) + (c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (
c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 -
(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*
sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^
4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5
*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a
^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4
 + 4*a^4*c*d^2*e^6 + a^5*e^8))*log((c^4*d^4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^4)*x +
 (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2 + 7*a^3*c^2*d^2*e^4 - a^4*c*e^6 - 2*(a^3*c^4*d^9
*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c^2*d^5*e^5 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*sqrt(-
(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*
e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*
e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*
d^2*e^14 + a^11*e^16)))*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c
^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*
a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*
d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c
^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^1
1*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 +
 a^5*e^8))) - (c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^
3 + a^2*d*e^5)*x^2)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c^3*d
^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^
6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16
 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d
^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^
16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5
*e^8))*log((c^4*d^4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^4)*x - (a*c^4*d^6 - 7*a^2*c^3*
d^4*e^2 + 7*a^3*c^2*d^2*e^4 - a^4*c*e^6 - 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7*e^3 +
 6*a^5*c^2*d^5*e^5 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*
e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a
^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8
 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))*
sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d
^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c
^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^
2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*
d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4
*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) + (5*c*d^3*e
 + a*d*e^3 + (5*c*d^2*e^2 + a*e^4)*x^2)*sqrt(-e/d)*log((e*x^2 + 2*d*x*sqrt(-e/d)
 - d)/(e*x^2 + d)) + 2*(c*d^2*e^2 + a*e^4)*x)/(c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2
*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2), 1/4*(2*(5*c*d^3*e + a*d*e^3
 + (5*c*d^2*e^2 + a*e^4)*x^2)*sqrt(e/d)*arctan(e*x/(d*sqrt(e/d))) + (c^2*d^6 + 2
*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2)*sqrt((
4*c^3*d^3*e - 4*a*c^2*d*e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4
 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4
*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28
*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^
10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c
^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))*log((c^4*d^4 - 6*a*
c^3*d^2*e^2 + a^2*c^2*e^4)*x + (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2 + 7*a^3*c^2*d^2*e^
4 - a^4*c*e^6 + 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c^2*d^5*e^5 + 4*a^6
*c*d^3*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 -
 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c
^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 2
8*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))*sqrt((4*c^3*d^3*e - 4*a*c^
2*d*e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 +
 a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^
2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 +
56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*
e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c
^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) - (c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e
^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*
e^3 + (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5
*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^
6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a
^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12
 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d
^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))*log((c^4*d^4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^
4)*x - (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2 + 7*a^3*c^2*d^2*e^4 - a^4*c*e^6 + 2*(a^3*c
^4*d^9*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c^2*d^5*e^5 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*
sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^
4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5
*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a
^10*c*d^2*e^14 + a^11*e^16)))*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 + (a*c^4*d^8 + 4
*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8
 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^
3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70
*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14
 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2
*e^6 + a^5*e^8))) + (c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*
d^3*e^3 + a^2*d*e^5)*x^2)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2
*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 1
2*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^
8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7
*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a
^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6
 + a^5*e^8))*log((c^4*d^4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^4)*x + (a*c^4*d^6 - 7*a^
2*c^3*d^4*e^2 + 7*a^3*c^2*d^2*e^4 - a^4*c*e^6 - 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7
*e^3 + 6*a^5*c^2*d^5*e^5 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^
6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16
 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d
^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^
16)))*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3
*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38
*a^2*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d
^14*e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^
8*c^3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d
^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) - (c^2
*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^2
)*sqrt((4*c^3*d^3*e - 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2
*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2
*c^5*d^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*
e^2 + 28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^
3*d^6*e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 +
 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))*log((c^4*d^
4 - 6*a*c^3*d^2*e^2 + a^2*c^2*e^4)*x - (a*c^4*d^6 - 7*a^2*c^3*d^4*e^2 + 7*a^3*c^
2*d^2*e^4 - a^4*c*e^6 - 2*(a^3*c^4*d^9*e + 4*a^4*c^3*d^7*e^3 + 6*a^5*c^2*d^5*e^5
 + 4*a^6*c*d^3*e^7 + a^7*d*e^9)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d
^4*e^4 - 12*a^3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 +
28*a^5*c^6*d^12*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*
e^10 + 28*a^9*c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))*sqrt((4*c^3*d^3*e
- 4*a*c^2*d*e^3 - (a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 + 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d
^2*e^6 + a^5*e^8)*sqrt(-(c^7*d^8 - 12*a*c^6*d^6*e^2 + 38*a^2*c^5*d^4*e^4 - 12*a^
3*c^4*d^2*e^6 + a^4*c^3*e^8)/(a^3*c^8*d^16 + 8*a^4*c^7*d^14*e^2 + 28*a^5*c^6*d^1
2*e^4 + 56*a^6*c^5*d^10*e^6 + 70*a^7*c^4*d^8*e^8 + 56*a^8*c^3*d^6*e^10 + 28*a^9*
c^2*d^4*e^12 + 8*a^10*c*d^2*e^14 + a^11*e^16)))/(a*c^4*d^8 + 4*a^2*c^3*d^6*e^2 +
 6*a^3*c^2*d^4*e^4 + 4*a^4*c*d^2*e^6 + a^5*e^8))) + 2*(c*d^2*e^2 + a*e^4)*x)/(c^
2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x^
2)]

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*x**2+d)**2/(c*x**4+a),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.28403, size = 698, normalized size = 1.54 \[ \frac{{\left (5 \, c d^{2} e^{2} + a e^{4}\right )} \arctan \left (\frac{x e^{\frac{1}{2}}}{\sqrt{d}}\right ) e^{\left (-\frac{1}{2}\right )}}{2 \,{\left (c^{2} d^{5} + 2 \, a c d^{3} e^{2} + a^{2} d e^{4}\right )} \sqrt{d}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} - 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{4} + 2 \, \sqrt{2} a^{2} c^{2} d^{2} e^{2} + \sqrt{2} a^{3} c e^{4}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} - 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{2 \,{\left (\sqrt{2} a c^{3} d^{4} + 2 \, \sqrt{2} a^{2} c^{2} d^{2} e^{2} + \sqrt{2} a^{3} c e^{4}\right )}} + \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} + 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )}{\rm ln}\left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{4} + 2 \, \sqrt{2} a^{2} c^{2} d^{2} e^{2} + \sqrt{2} a^{3} c e^{4}\right )}} - \frac{{\left (\left (a c^{3}\right )^{\frac{1}{4}} c^{2} d^{2} - \left (a c^{3}\right )^{\frac{1}{4}} a c e^{2} + 2 \, \left (a c^{3}\right )^{\frac{3}{4}} d e\right )}{\rm ln}\left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{4 \,{\left (\sqrt{2} a c^{3} d^{4} + 2 \, \sqrt{2} a^{2} c^{2} d^{2} e^{2} + \sqrt{2} a^{3} c e^{4}\right )}} + \frac{x e^{2}}{2 \,{\left (c d^{3} + a d e^{2}\right )}{\left (x^{2} e + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + a)*(e*x^2 + d)^2),x, algorithm="giac")

[Out]

1/2*(5*c*d^2*e^2 + a*e^4)*arctan(x*e^(1/2)/sqrt(d))*e^(-1/2)/((c^2*d^5 + 2*a*c*d
^3*e^2 + a^2*d*e^4)*sqrt(d)) + 1/2*((a*c^3)^(1/4)*c^2*d^2 - (a*c^3)^(1/4)*a*c*e^
2 - 2*(a*c^3)^(3/4)*d*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1
/4))/(sqrt(2)*a*c^3*d^4 + 2*sqrt(2)*a^2*c^2*d^2*e^2 + sqrt(2)*a^3*c*e^4) + 1/2*(
(a*c^3)^(1/4)*c^2*d^2 - (a*c^3)^(1/4)*a*c*e^2 - 2*(a*c^3)^(3/4)*d*e)*arctan(1/2*
sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(sqrt(2)*a*c^3*d^4 + 2*sqrt(2)*
a^2*c^2*d^2*e^2 + sqrt(2)*a^3*c*e^4) + 1/4*((a*c^3)^(1/4)*c^2*d^2 - (a*c^3)^(1/4
)*a*c*e^2 + 2*(a*c^3)^(3/4)*d*e)*ln(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sq
rt(2)*a*c^3*d^4 + 2*sqrt(2)*a^2*c^2*d^2*e^2 + sqrt(2)*a^3*c*e^4) - 1/4*((a*c^3)^
(1/4)*c^2*d^2 - (a*c^3)^(1/4)*a*c*e^2 + 2*(a*c^3)^(3/4)*d*e)*ln(x^2 - sqrt(2)*x*
(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^4 + 2*sqrt(2)*a^2*c^2*d^2*e^2 + sqrt(2
)*a^3*c*e^4) + 1/2*x*e^2/((c*d^3 + a*d*e^2)*(x^2*e + d))